翻訳と辞書
Words near each other
・ Parabolic cylinder function
・ Parabolic cylindrical coordinates
・ Parabolic fractal distribution
・ Parabolic geometry
・ Parabolic geometry (differential geometry)
・ Parabolic induction
・ Parabolic Lie algebra
・ Parabolic loudspeaker
・ Parabolic microphone
・ Parabolic partial differential equation
・ Parabolic reflector
・ Parabolic SAR
・ Parabolic trajectory
・ Parabolic trough
・ Paraboloid
Paraboloidal coordinates
・ Paraborne Aviation
・ Paraborne Backplane
・ Parabothus
・ Parabotia
・ Parabouchetia
・ Parabounce
・ Parabrachial area
・ Parabrachionycha
・ Parabrachylomia
・ Parabradysaurus
・ Parabrahm
・ Parabrahm (album)
・ Parabramis pekinensis
・ Parabraxas


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Paraboloidal coordinates : ウィキペディア英語版
Paraboloidal coordinates
Paraboloidal coordinates are a three-dimensional orthogonal coordinate system (\lambda, \mu, \nu) that generalizes the two-dimensional parabolic coordinate system. Similar to the related ellipsoidal coordinates, the paraboloidal coordinate system has orthogonal quadratic coordinate surfaces that are ''not'' produced by rotating or projecting any two-dimensional orthogonal coordinate system.
==Basic formulae==

The Cartesian coordinates (x, y, z) can be produced from the ellipsoidal coordinates
( \lambda, \mu, \nu ) by the equations
:
x^ = \frac

:
y^ = \frac

:
z =
\frac \left( A + B - \lambda - \mu -\nu \right)

where the following limits apply to the coordinates
:
\lambda < B < \mu < A < \nu

Consequently, surfaces of constant \lambda are elliptic paraboloids
:
\frac + \frac = 2z + \lambda

and surfaces of constant \nu are likewise
:
\frac + \frac = 2z + \nu

whereas surfaces of constant \mu are hyperbolic paraboloids
:
\frac + \frac = 2z + \mu


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Paraboloidal coordinates」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.